eSpyMath: Grade 7 Math Workbook

Contents

Preface1
About eSpyMath Grade 7 Math Workbook2
How to use this book
Contents
Chapter 1. Mastering Numbers: From Integers to Proportions7
1-1. Understanding and applying integers and rational numbers in the number system
1-2. Operations with rational numbers12
1-3. Real-life applications of rational number operations16
1-4. Absolute value and its applications21
1-5. Simplifying and operating with algebraic fractions24
1-6. Conversion between mixed numbers and improper fractions
1-7. Operations with fractions and mixed numbers31
1-8. Fraction to decimal to percent conversion
1-9. Understanding and using exponents and square roots
1-10. Application of scientific notation41
1-11. Comparing and ordering rational numbers44
1-12. Recognizing and representing proportional relationships between quantities
Chapter 2. Exploring Algebra: Expressions, Equations, and Inequalities
2-1. Understanding expressions, equations, and inequalities50
2-2. Order of operations with rational numbers53
2-3. Evaluating and simplifying algebraic expressions56
2-4. Translating verbal expressions into algebraic expressions
2-5. Properties of operations62
2-6. Combining like terms and simplifying expressions65
2-7. Multiplying and factoring polynomials67
2-8. Solving one-step and multi-step equations and inequalities
2-9. Solving and graphing inequalities on a number line72
2-10. Translating and solving equation and inequality word problems

Chapter 3. Ratios and Proportions: Understanding and Applying Mathematical Relationships	77
3-1. Understanding and using ratios, rates, and proportions	78
3-2. Solving real-world ratio and rate problems	82
3-3. Identifying proportional and non-proportional relationships in various forms	86
3-4. Using proportional reasoning to solve problems	90
3-5. Scale drawings and models	95
3-6. Indirect measurement techniques	100
3-7. Understanding similar figures	105
3-8. Applications of percent (including discounts, markups, sales tax, tips, and percent of chang	ge)
	109
3-9. Practical Applications of Percentages in Everyday Life	113
Chapter 4. Geometry in Motion: Shapes, Angles, and Transformations	117
4-1. Exploring and understanding geometric figures	118
4-2. Measuring and constructing angles (acute, obtuse, right, straight)	124
4-3. Understanding and using complementary, supplementary, vertical, and adjacent angles	128
4-4. Classifying and exploring properties of triangles (including the Triangle Sum Theorem)	131
4-5. Constructing triangles and understanding congruence	135
4-6. Properties and classification of quadrilaterals	140
4-7. Understanding and exploring transformations on the coordinate plane (reflections, transla rotations, dilations)	itions, 144
4-8. Understanding congruence and similarity through transformations	148
Chapter 5. Functions and Their Graphs: Modeling and Analysis	153
5-1. Understanding the concept of a function	154
5-2. Representing and interpreting functions using tables, graphs, equations, and words	159
5-3. Exploring linear functions and slope-intercept form	164
5-4. Analyzing and interpreting proportional relationships	169
5-5. Constructing and analyzing graphs	174
5-6. Using functions to model relationships between quantities	179
Chapter 6. Measuring Space: Geometry of Shapes and Solids	184
6-1. Calculating perimeter, area, and volume of various figures	185
6-2. Understanding the area and circumference of circles	189
6-3. Exploring surface area and volume of solids (prisms, cylinders)	191
6-4. Applying area and volume knowledge to solve real-world problems	196
6-5. Drawing, constructing, and analyzing geometrical figures and their properties	199

Chapter 7. Data and Probability: Analyzing Chances and Making Predictions	202
7-1. Understanding and computing probabilities of simple and compound events	203
7-2. Exploring theoretical and experimental probability	207
7-3. Representing data using a variety of graphs (dot plots, histograms, box-and-whisker plots)	210
7-4. Analyzing and interpreting data distributions	215
7-5. Exploring measures of center and measures of variability	218
7-6. Applying probability to make inferences and justify conclusions	220
End of the Workbook	224

Chapter 1. Mastering Numbers: From Integers to Proportions

1-1. Understanding and applying integers and rational numbers in the number system

1. 4+(8÷2)	8
2. 15–(3×5)	0
3. $(4+6) \times 2$	20
4. (10-5)÷5	1

1. Integers:

- Definition: Integers are whole numbers that can be positive, negative, or zero. They do not have fractional or decimal parts.
- Examples: -3, 0, 7.

2. Rational Numbers:

- Definition: Rational numbers are numbers that can be expressed as the quotient or fraction of two integers, where the denominator is not zero.
- Examples: 1/2, -3/4, 5.

3. Classifying Numbers:

- Integer: Any whole number, positive or negative, including zero.
- Rational Number: Any number that can be written as a fraction, which includes integers (since they can be written as fractions with a denominator of 1).

4. Converting Fractions to Decimals:

- A fraction can be converted to a decimal by dividing the numerator by the denominator.
- Example: 3/4 = 0.75.

5. Opposites and Absolute Values:

- Opposite: The opposite of an integer is the same number with the opposite sign.
- Absolute Value: The distance of a number from zero on the number line, regardless of direction.

Formulas

1. Adding and Subtracting Rational Numbers:

- Same Denominator: Add or subtract the numerators and keep the denominator.
- Different Denominators: Find a common denominator, convert, then add or subtract.

$$\frac{a}{b} + \frac{c}{b} = \frac{a+c}{b}$$
$$\frac{a}{b} + \frac{c}{d} = \frac{ad+bc}{bd}$$

2. Multiplying Rational Numbers:

- Multiply the numerators together and the denominators together.

$$\frac{a}{b} \times \frac{c}{d} = \frac{ac}{bd}$$

3. Solving Linear Equations:

- To solve 3x + 4 = 13, isolate x.

$$3x + 4 = 13 \Longrightarrow 3x = 9 \Longrightarrow x = 3$$

4. Finding the Whole Number from a Fraction:

- If $\frac{1}{2}$ of a number is 5, the whole number is found by multiplying by 2.

$$\frac{1}{2}x = 5 \Longrightarrow x = 10$$

1) What is an integer? Give 3 examples of integers.	2) What is a rational number? Provide 2 examples.
3) Identify whether the number -8 is an integer, rational number, or both.	4) Convert the fraction 3/4 into a decimal.
5) Is the number 0.5 an integer, a rational number, or both? Explain.	6) What is the opposite of the integer -7?

7) Add the rational numbers 3/4 and 2/3 and simplify if possible.	8) What is the product of -2 and 5/6?
9) Solve for x in the equation 3x + 4 = 13.	10) If 1/2 of a number is 5, what is the whole number?

1)	What is an integer? Give 3 examples of	2) What is a rational number? Provide 2
int	egers.	examples.
-	An integer is a whole number that can be	- A rational number is any number that can be
	either positive, negative, or zero.	expressed as the quotient or fraction of two
-	Examples of integers include -5, 0, and 7.	integers, where the denominator is not zero.
		- Examples include 1/2 and -3/4.
3)	Identify whether the number -8 is an integer,	4) Convert the fraction 3/4 into a decimal.
rat	ional number, or both.	- To convert the fraction 3/4 into a decimal,
-	The number -8 is both an integer and a	divide the numerator (3) by the denominator
	rational number.	(4).
-	It is an integer because it is a whole number,	$-3 \div 4 = 0.75.$
	and it is rational because it can be written as -	
	8/1, which is the quotient of two integers.	
5)	Is the number 0.5 an integer, a rational	6) What is the opposite of the integer -7?
nu	mber, or both? Explain.	- The opposite of the integer -7 is 7.
-	The number 0.5 is not an integer because it is	- The opposite of an integer is the number that
	not a whole number.	is the same distance from zero on the
-	However, it is a rational number because it	number line but in the opposite direction.
	can be expressed as the fraction 1/2, which is	
	the quotient of two integers.	
7)	Add the rational numbers 3/4 and 2/3 and	8) What is the product of -2 and 5/6?
sin	nplify if possible.	- The product of -2 and 5/6 is found by
-	To add 3/4 and 2/3, first find a common	multiplying the two numbers: (-2) × (5/6) = -
	denominator, which is 12 in this case.	10/6, which can be simplified to -5/3.
-	Then, convert each fraction to have the	
	common denominator: 3/4 = 9/12 and 2/3 =	
	8/12.	
-	Add them together: 9/12 + 8/12 = 17/12 or	
	1 5	
	1 <u>—</u> . 12	
9)	Solve for x in the equation 3x + 4 = 13.	10) If 1/2 of a number is 5, what is the whole
-	To solve for x, first subtract 4 from both sides	number?
	of the equation: 3x + 4 - 4 = 13 - 4.	- If 1/2 of a number is 5, multiply both sides of
-	This simplifies to 3x = 9. Then, divide both	the equation by 2 to find the whole number:
	sides by 3: 3x/3 = 9/3. Thus, x = 3.	$1/2 \times \text{number} = 5$, so number = 5×2 .
		Therefore, the whole number is 10.

1-2. Operations with rational numbers

1. (3+7)-4	6
2. (8×2)÷4	4
3. $10 - (2 + 3) \times 2$	0
4. (12÷6)+9	11

1. Addition and Subtraction of Rational Numbers:

- To add or subtract fractions, they must have a common denominator. Convert fractions to equivalent fractions with the same denominator before performing the operation.

2. Multiplication of Rational Numbers:

Multiply the numerators together and the denominators together. Simplify the result if possible.

3. Division of Rational Numbers:

To divide by a fraction, multiply by its reciprocal (flip the numerator and denominator of the divisor).

4. Reciprocal of a Number:

- The reciprocal of a number
$$\frac{a}{b}$$
 is $\frac{b}{a}$

5. Solving Equations Involving Fractions:

- To solve equations involving fractions, clear the fractions by multiplying through by the least common denominator (LCD) or by isolating the variable.

6. Understanding Sums and Products of Rational Numbers:

- The sum or product of two rational numbers can be determined by setting up equations based on the given conditions and solving for the unknowns.

Formulas

1. Addition/Subtraction of Rational Numbers:

- Same Denominator:
$$\frac{a}{b} + \frac{c}{b} = \frac{a+c}{b}$$

- Different Denominators: $\frac{a}{b} + \frac{c}{d} = \frac{ad+bd}{bd}$

2. Multiplication	of Rational	Numbers:
-------------------	-------------	----------

$$\frac{a}{b} \times \frac{c}{d} = \frac{ac}{bd}$$

3. Division of Rational Numbers:

$$\frac{a}{b} \div \frac{c}{d} = \frac{a}{b} \times \frac{d}{c} = \frac{ad}{bc}$$

4. Reciprocal of a Rational Number:

$$\left(\frac{a}{b}\right)^{-1} = \frac{b}{a}$$

5. Solving Rational Equations:

- Clear fractions by multiplying by the LCD or isolate the variable:

$$\frac{5}{6x} - \frac{1}{2} = \frac{1}{3}$$

6. Sum and Product of Two Numbers:

- For sum S and product P :

$$x + y = S$$
 and $xy = P$

1) Add the rational numbers 1/4 and 1/3. Simplify your answer if possible.	2) Subtract 2/5 from 3/4. Give your answer as a simplified fraction.
3) Multiply the rational numbers -3/4 and 2/3. Simplify the result if necessary.	4) Divide the fraction 3/5 by the fraction 2/3. Give your answer as a simplified fraction.
5) What is the sum of -7/8 and 5/6? Simplify your answer.	6) If you subtract a number from its reciprocal, the result is 3/2. If the original number is a/b, write the equation representing this situation.
7) Solve the equation for x: (5/6)x - 1/2 = 1/3.	8) A recipe calls for 3/4 cup of sugar, but you accidentally pour in 1 cup. How much sugar must you remove to have the correct amount?
9) If the product of two rational numbers is -1 and one of the numbers is 4/5, what is the other number?	10) Two numbers have a sum of 5 and a product of 6. If one of the numbers is 2, find the other number.

1) Add the rational numbers 1/4 and 1/3.	2) Subtract 2/5 from 3/4. Give your answer as a
Simplify your answer if possible.	simplified fraction.
- To add 1/4 and 1/3, find a common	- To subtract 2/5 from 3/4, find a common
denominator, which is 12.	denominator, which is 20.
- Then, convert each fraction: 1/4 = 3/12 and	- Convert each fraction: 3/4 = 15/20 and 2/5 =
1/3 = 4/12.	8/20.
- Add them together: 3/12 + 4/12 = 7/12.	- Then subtract: 15/20 - 8/20 = 7/20.
3) Multiply the rational numbers -3/4 and 2/3.	4) Divide the fraction 3/5 by the fraction 2/3.
Simplify the result if necessary.	Give your answer as a simplified fraction.
- To multiply -3/4 by 2/3, multiply the	- To divide 3/5 by 2/3, multiply the first fraction
numerators together and the denominators	by the reciprocal of the second fraction: $3/5 \times$
together: (-3 × 2) / (4 × 3) = -6/12, which	3/2 = 9/10.
simplifies to -1/2.	
5) What is the sum of -7/8 and 5/6? Simplify	6) If you subtract a number from its reciprocal,
your answer.	the result is 3/2. If the original number is a/b,
- Find a common denominator, which is 24.	write the equation representing this situation.
- Convert each fraction: -7/8 = -21/24 and 5/6	- The equation is $a/b - b/a = 3/2$.
= 20/24. Then add: -21/24 + 20/24 = -1/24.	
7) Solve the equation for x: (5/6)x - 1/2 = 1/3.	8) A recipe calls for 3/4 cup of sugar, but you
- First, find a common denominator for the	accidentally pour in 1 cup. How much sugar
fractions, which is 6, and rewrite the	must you remove to have the correct amount?
equation: (5/6)x - 3/6 = 2/6.	- Subtract the correct amount from what you
- Then, add 3/6 to both sides: (5/6)x = 5/6.	added: 1 cup - 3/4 cup = 1/4 cup.
- Dividing both sides by 5/6 gives x = 1.	- You must remove 1/4 cup of sugar.
9) If the product of two rational numbers is -1	10) Two numbers have a sum of 5 and a product
and one of the numbers is 4/5, what is the other	of 6. If one of the numbers is 2, find the other
number?	number.
- To find the other number, divide -1 by 4/5: -1	- Let the two numbers be x and y.
\div (4/5) = -1 × (5/4) = -5/4.	- Given: $x + y = 5$ and $x \times y = 6$.
- The other number is -5/4.	Identify the known number:
	- One of the numbers is given as 2.
	- Let's say $x = 2$.
	Substitute x in the sum equation:
	- Since $x = 2$, substitute x in $x + y = 5$:
	2+y-5
	$\sum_{x \in y = J} z = y = J$
	Solve for y:
	- Subtract 2 from both sides of the equation: y = F = 2
	y=5-2
	- Simplify: $y = 3$
	- Therefore, the other number is 3.

1-3. Real-life applications of rational number operations

1. 7×(3−1)	14
2. (9+3)÷3	4
3. $8 - (4 \div 2) \times 3$	2
4. $(15-5) \times (2+1)$	30

1. Doubling a Quantity:

- To double a quantity, multiply it by 2.

2. Dividing a Length into Equal Parts:

- To find how many equal parts a length can be divided into, divide the total length by the length of each part.

3. Calculating Distance Based on Fuel Efficiency:

- To calculate how far you can drive, multiply the fuel efficiency (miles per gallon) by the amount of fuel left (gallons).

4. Multiplying Quantities and Costs:

- To find the total cost, multiply the quantity by the cost per unit.

5. Subtracting Quantities:

- To find how much more was added than required, subtract the required amount from the added amount.

6. Adding to a Capacity:

- To find how much more can be added to a tank, subtract the current amount from the total capacity.

7. Calculating Unpainted Fraction:

- To find the remaining fraction, subtract the painted fraction from the whole (1).

8. Finding Fraction of Games Lost:

- To find the fraction of games lost, subtract the fraction of games won from the total (1).

9. Increasing Daily Intake:

- To find the new daily intake, add the additional intake to the original intake.

10. Time to Complete a Phase:

- To find the time to complete a phase at a given rate, divide the total time by the fraction completed per unit of time.

Formulas:		
1. Doubling a Quantity:		
2×quantity		
2 Dividing Longth		
Total Length		
Length of Each Part		
3. Distance Based on Fuel Efficiency:		
Fuel Efficiency (miles per gallon)×Fuel Left (gallons)		
4. Total Cost:		
Quantity × Cost per Unit		
E Difference in Quantities		
Added Quantity – Required Quantity		
6. Additional Capacity:		
Total Capacity – Current Amount		
7. Remaining Fraction:		
1-Painted Fraction		
8. Fraction of Games Lost:		
1–Fraction of Games Won		
9. New Daily Intake: Original Intake + Additional Intake		
10. Time to Complete Phase:		
Total Time		
Fraction Completed per Unit Time		

1) If a recipe calls for 2/3 cup of milk and you want to double the recipe, how much milk will you need?	2) You have a rope that is $7\frac{1}{2}$ feet long. You need to cut it into pieces that are 3/4 foot long each. How many pieces can you cut?
3) A car's fuel efficiency is $20\frac{1}{2}$ miles per gallon.	4) You bought $5\frac{1}{2}$ yards of fabric for \$6.75 per
If you have 3/4 of a gallon of fuel left, how far can you drive?	yard. How much did the fabric cost in total?
5) A recipe requires 1/4 teaspoon of salt, but you accidentally added 1/2 teaspoon. How much more did you add than required?	6) If a tank can hold $1\frac{3}{4}$ gallons of water and you already have 1/2 gallon in it, how much more water can you add?
7) You are painting a room and have painted 3/5 of it. If you complete another 1/5, what fraction of the room will be left unpainted?	8) A school's basketball team won 5/8 of its games and lost the rest. What fraction of its games did the team lose?
9) If you drink $2\frac{1}{2}$ bottles of water per day and decide to increase your water intake by 3/4 bottle per day, how much water will you drink each day now?	10) A project is divided into 4 phases. If you complete 3/4 of the first phase in one day, at the same rate, how many days will it take to complete the entire first phase?

1) If a recipe calls for 2/3 cup of milk and you want to double the recipe, how much milk will	2) You have a rope that is $7\frac{1}{2}$ feet long. You
 you need? To double the recipe, multiply the amount of 	need to cut it into pieces that are 3/4 foot long
milk by 2: 2/3 cup x 2 = 4/3 cups or $1\frac{1}{2}$ cups	- To find out how many pieces you can cut,
	divide the total length of the rope by the
of milk.	length of each piece: $7\frac{1}{2}$ feet / (3/4) foot =
	(15/2) feet / (3/4) foot = (15/2) × (4/3) = 30/3 = 10 pieces.
3) A car's fuel efficiency is $20\frac{1}{2}$ miles per gallon.	4) You bought $5\frac{1}{2}$ yards of fabric for \$6.75 per
If you have 3/4 of a gallon of fuel left, how far	vard How much did the fabric cost in total?
in you have 5/4 of a gallon of fueriert, now far	
can you drive?	- IO find the total cost, multiply the amount of
 Multiply the fuel efficiency by the amount of fuel left: 20 1/2 miles/gallon × 3/4 gallon = 	fabric by the cost per yard: $5\frac{1}{2}$ yards × \$6.75
3	-11/2 yards x \$6.75 - \$37.125. The total cost
$41/2 \text{ miles} \times 3/4 = 123/8 \text{ miles} = 15 - \text{ miles}.$	$= 11/2$ yards $\times 90.75 = 957.125$. The total cost is (27.12) (rounded to the percent cost)
	is \$57.15 (founded to the hearest cent).
5) A recipe requires 1/4 teaspoon of salt, but	$\frac{3}{5}$
you accidentally added 1/2 teaspoon. How much	b) If a tank can hold \perp gallons of water and Λ
more did you add than required?	vou alvoadu hava 1/2 gallan in it havu much
- Subtract the required amount of salt from	you already have 1/2 gallon in it, now much
what you added: $1/2$ teaspoon - $1/4$	more water can you add?
toospoon = $1/4$ toospoon	- Subtract the amount of water already in the
 You added 1/4 teaspoon more than required. 	tank from the total capacity: $1\frac{3}{4}$ gallons - 1/2
	gallon = 7/4 gallons - $2/4$ gallons = $5/4$
	gallons.
	- You can add 5/4 gallons or $1\frac{1}{4}$ gallons more
	water.
7) You are painting a room and have painted 3/5	8) A school's basketball team won 5/8 of its
of it. If you complete another 1/5 what fraction	games and lost the rest. What fraction of its
of the room will be left uppointed?	games did the team lose?
of the room will be left unpainted?	
- Add the fractions of the room you have	- Io find the fraction of games lost, subtract
painted: $3/5 + 1/5 = 4/5$.	the fraction of games won from 1: 1 - 5/8 =
- To find the fraction left unpainted, subtract	3/8.
this from 1: 1 - 4/5 = 1/5.	- The team lost 3/8 of its games.
- Thus, 1/5 of the room will be left unpainted.	
1	10) A project is divided into 4 phases. If you
9) If you drink $2\frac{1}{2}$ bottles of water per day and	complete 3/4 of the first phase in one day, at the
decide to increase your water intake by 3/4	same rate, now many days will it take to
bottle per day, how much water will you drink	complete the entire first phase?
each day now?	

- Add the increase to your current intake: $2\frac{1}{2}$ bottles + 3/4 bottle = 5/2 bottles + 3/4 bottle = 10/4 bottles + 3/4 bottle = 13/4 bottles or $3\frac{1}{4}$ bottles per day.	 If 3/4 of the phase is completed in one day, then to complete 1/4 more (to finish the phase), it would take 1/3 of a day (since 3/4 is completed in 1 day, 1/4 would be completed in 1/3 of a day). ^(3/4)/_{1 day} = ¹/_{x day}
	- Therefore, it will take 1 + 1/3 days to
	complete the entire first phase, or $1\frac{1}{3}$ days.

1-4. Absolute value and its applications

1. $5 + (2^2 \times 2)$	13
$2 (2^2 - 1) \cdot 2$	4
2. $(3 - 1) \div 2$	24
3. $4 \times (2 + 2^2)$	2
4. $16 \div (2^2 + 4)$	

1. Absolute Value:

- The absolute value of a number is the distance of the number from zero on the number line, without considering the direction.
- Notation: |x|
- Examples: |5| = 5, |-5| = 5.

2. Applications of Absolute Value:

- Temperature Changes: Absolute value can be used to calculate the total change in temperature, regardless of whether the temperature increased or decreased.
- Elevation and Depth: Absolute value helps in determining the distance above or below a reference point (like sea level).
- Distance Between Points: On a number line, the distance between two points can be found using the absolute value of their difference.

3. Solving Absolute Value Equations:

- Equations involving absolute values can have two possible solutions.
- Example: |x a| = b implies x a = b or x a = -b.

Formulas:

1. Absolute Value:

$$|x| = \begin{cases} x & \text{if } x \ge 0 \\ -x & \text{if } x < 0 \end{cases}$$

2. Distance Between Two Points on a Number Line:

Distance = |a - b|

3. Solving Absolute Value Equations:

$$|x-a|=b \Longrightarrow x-a=b \text{ or } x-a=-b$$

1) What is the absolute value of -5?	2) If the temperature was 3 degrees below zero yesterday and 8 degrees above zero today, what is the total change in temperature?
3) The sea level is considered 0. If a submarine is 200 meters below sea level and then rises 75 meters, what is its new position relative to sea level?	4) Find the absolute value of the difference between -4 and 7.
5) A number line has points A and B, where A is at -3 and B is at 4. What is the distance between A and B?	6) If you owe your friend \$15 (represented as -15) and you pay him back \$10, how much do you still owe?
7) Solve for x in the equation $ x - 2 = 5$.	8) The elevation of a mountain peak is 1,450 meters above sea level, and a valley is 350 meters below sea level. What is the absolute difference in elevation between the peak and the valley?
9) A student scores -2 on a test for each question they answer incorrectly. If the student answered 12 questions wrong, what is their score? (if all correct, then the score is 100)	10) If the absolute value of a number minus 4 is 9, what are the possible values of the number?

1) What is the absolute value of -5?	2) If the temperature was 3 degrees below zero
- The absolute value of -5 is 5.	vesterday and 8 degrees above zero today, what
- Absolute value represents the distance of a	is the total change in temperature?
number from zero on the number line.	- The total change in temperature is the
regardless of direction.	absolute value of the difference: $ 3 - 8 = -$
	5 = 5 degrees.
3) The sea level is considered 0. If a submarine is	4) Find the absolute value of the difference
200 meters below sea level and then rises 75	between -4 and 7.
meters, what is its new position relative to sea	- The difference between -4 and 7 is 7 - (-4) =
level?	11.
- The submarine's new position is -200 + 75 = -	- The absolute value of 11 is 11.
125 meters.	
- Its position relative to sea level is 125 meters	
below.	
5) A number line has points A and B, where A is	6) If you owe your friend \$15 (represented as -
at -3 and B is at 4. What is the distance between	15) and you pay him back \$10, how much do you
A and B?	still owe?
- The distance between A and B is the absolute	- After paying back \$10, you still owe \$15 - \$10
value of their difference: (-3) - 4 = -7 = 7	= \$5.
units.	- The absolute value of what you owe is -\$5
	= \$5.
7) Solve for x in the equation x - 2 = 5.	8) The elevation of a mountain peak is 1,450
- The equation $ x - 2 = 5$ means $x - 2 = 5$ or $x - 2$	meters above sea level, and a valley is 350
2 = -5.	meters below sea level. What is the absolute
- Solving each equation:	difference in elevation between the peak and
- For x - 2 = 5, x = 7.	the valley?
- For x - 2 = -5, x = -3.	- The absolute difference is 1,450 - (-350) =
- So, x can be 7 or -3.	1,450 + 350 = 1,800 meters.
9) A student scores -2 on a test for each question	10) If the absolute value of a number minus 4 is
they answer incorrectly. If the student answered	9, what are the possible values of the number?
12 questions wrong, what is their score? (if all	- The equation is $ x - 4 = 9$. This means $x - 4 =$
correct, then the score is 100)	9 or $x - 4 = -9$. Solving each:
- The student's score is 12 questions × -2	- For $x - 4 = 9$, $x = 13$.
points/question = -24 points.	- For x - 4 = -9, x = -5.
- The score is 100 – 24 = 76.	- The possible values of the number are 13 and
	-5.

1-5. Simplifying and operating with algebraic fractions

1. $2^3 + 6$	14
$2 10 - 2^{2}$	6
$2^{2} \times 2^{2}$	18
5.5×2	2
4. $18 \div 3^{-1}$	

1. Simplifying Algebraic Fractions:

- Factor the numerator and the denominator, then cancel out common factors.

2. Adding and Subtracting Algebraic Fractions:

- Find a common denominator, convert each fraction, then add or subtract the numerators.

3. Multiplying Algebraic Fractions:

- Multiply the numerators together and the denominators together, then simplify.

4. Dividing Algebraic Fractions:

- Multiply by the reciprocal of the divisor.

5. Factoring:

- Factor polynomials to simplify expressions, particularly for common factors in the numerator and denominator.

6. Solving Equations Involving Algebraic Fractions:

- Clear fractions by multiplying through by the least common denominator (LCD), then solve the resulting equation.

1. Simplifying Algebraic Fractions:
$$\frac{a^2b}{ab} = \frac{a}{1} = a$$

2. Adding/Subtracting Algebraic Fractions:
$$\frac{a}{x} + \frac{b}{y} = \frac{ay + bx}{xy}$$

3. Multiplying Algebraic Fractions:
$$\frac{a}{b} \times \frac{c}{d} = \frac{ac}{bd}$$

4. Dividing Algebraic Fractions:
$$\frac{a}{b} \div \frac{c}{d} = \frac{a}{b} \times \frac{d}{c} = \frac{ad}{bc}$$

5. Factoring Quadratic Expressions:
$$x^2 - 9 = (x - 3)(x + 3)$$

6. Solving Algebraic Equations:
$$\frac{x+2}{x-3} = 2 \Longrightarrow x + 2 = 2(x-3) \Longrightarrow x + 2 = 2x - 6 \Longrightarrow 8 = x \Longrightarrow x = 8$$

7) If
$$\frac{x}{y} + \frac{y}{x} = 3$$
, what is $\frac{x^2 + y^2}{xy}$?
8) How do you simplify $\frac{2x^3 - 8x}{4x}$?
9) Solve for x in the equation $\frac{x+2}{x-3} = 2$.
10) If $\frac{3a-2b}{4b-2a} = \frac{3}{4}$, what is the relationship between a and b?

1) Simplify the algebraic fraction $\frac{2x^2}{4x}$.	2) Add the algebraic fractions $\frac{1}{x}$ and $\frac{2}{x+2}$.
- To simplify $\frac{2x^2}{4x}$, divide both the numerator	- To add $\frac{1}{x}$ and $\frac{2}{x+2}$, find a common
and the denominator by their greatest	denominator, which is $x(x+2)$:
common factor, which is $2x: \frac{2x^2}{4x} = \frac{x}{2}$.	$\frac{1(x+2)}{x(x+2)} + \frac{2x}{x(x+2)} = \frac{x+2+2x}{x(x+2)} = \frac{3x+2}{x(x+2)}$.
3) Subtract $\frac{3y}{4}$ from $\frac{5y}{6}$. - To subtract $\frac{3y}{4}$ from $\frac{5y}{6}$, find a common denominator, which is 12: $\frac{5y}{6} - \frac{3y}{4} = \frac{10y}{12} - \frac{9y}{12} = \frac{y}{12}$.	4) Multiply the algebraic fractions $\frac{x}{y}$ and $\frac{2y}{3x}$. - To multiply $\frac{x}{y}$ by $\frac{2y}{3x}$, multiply the numerators and the denominators: $\frac{x \cdot 2y}{y \cdot 3x} = \frac{2xy}{3xy}$. - The xy terms cancel out, leaving $\frac{2}{3}$.

5) Divide the algebraic fraction $\frac{4x^2}{5y}$ by $\frac{2x}{15y^2}$. - To divide $\frac{4x^2}{5y}$ by $\frac{2x}{15y^2}$, multiply the first fraction by the reciprocal of the second: $\frac{4x^2}{5y} \times \frac{15y^2}{2x} = \frac{4 \cdot 15 \cdot x^2 \cdot y^2}{5 \cdot 2 \cdot y \cdot x}$ $= \frac{60x^2y^2}{10xy} = \frac{6xy}{1} = 6xy$.	6) Simplify the algebraic expression $\frac{x^2 - 9}{x^2 - 3x + 2}$ by factoring. - First, factor both the numerator and the denominator: $x^2 - 9$ can be factored as $(x + 3)(x - 3)$, and $x^2 - 3x + 2$ can be factored as $(x - 1)(x - 2)$. - Thus, $\frac{x^2 - 9}{x^2 - 3x + 2} = \frac{(x + 3)(x - 3)}{(x - 1)(x - 2)}$. - Without common factors, this is the simplified form.
7) If $\frac{x}{y} + \frac{y}{x} = 3$, what is $\frac{x^2 + y^2}{xy}$? - To find $\frac{x^2 + y^2}{xy}$, note that it resembles the given equation but squared. - Since $\frac{x}{y} + \frac{y}{x} \Rightarrow \frac{x^2 + y^2}{xy}$, the answer is $\frac{x^2 + y^2}{xy} = 3$.	8) How do you simplify $\frac{2x^3 - 8x}{4x}$? - Factor out the greatest common factor in the numerator: $2x^3 - 8x = 2x(x^2 - 4)$. - Then simplify the fraction: $\frac{2x(x^2 - 4)}{4x} = \frac{x^2 - 4}{2} = \frac{x^2 - 2^2}{2}$, which is $\frac{x^2 - 4}{2}$ after factoring.
 9) Solve for x in the equation \$\frac{x+2}{x-3}\$ = 2. Cross-multiply to solve for x: (x+2) = 2(x-3), which simplifies to x+2=2x-6. Subtract x from both sides to get 2=x-6, then add 6 to both sides to find x = 8. 	10) If $\frac{3a-2b}{4b-2a} = \frac{3}{4}$, what is the relationship between a and b ? - Cross-multiply to find the relationship: $3a-2b = \frac{3}{4}(4b-2a)$, which simplifies to $3a-2b = 3b - \frac{3}{2}a$. - Rearranging the terms to one side gives $3a + \frac{3}{2}a = 2b + 3b$, simplifying further to $4\frac{1}{2}a = 5b$, which gives the relationship $a = \frac{5}{4.5}b = \frac{10}{9}b$, indicating that a is $\frac{10}{9}$ times $b \cdot (a = \frac{10}{9}b)$

1-6. Conversion between mixed numbers and improper fractions

1. $(2+3) \times 2^2$	20
$(5 - 2)^2 + 2$	12
(3-2) + 3	9
3. 3 ³ ÷ 3	0
4. $(4 \times 2) - 2^3$	

1. Mixed Numbers:

- A mixed number is a number that consists of an integer and a proper fraction.
- Example: $2\frac{3}{4}$

2. Improper Fractions:

- An improper fraction is a fraction where the numerator is greater than or equal to the denominator.
- Example: $\frac{9}{4}$

3. Conversion from Mixed Numbers to Improper Fractions:

- To convert a mixed number to an improper fraction, multiply the whole number part by the denominator of the fraction, add the numerator, and place the result over the original denominator.
- Formula:

$$a\frac{b}{c} = \frac{ac+b}{c}$$

4. Conversion from Improper Fractions to Mixed Numbers:

To convert an improper fraction to a mixed number, divide the numerator by the denominator to get the integer part, and the remainder becomes the numerator of the proper fraction part.
 Formula:

$$\frac{a}{b} = q \frac{r}{b}$$
 where $q = \left\lfloor \frac{a}{b} \right\rfloor$ and $r = a \mod b$

1) Convert the mixed number $2\frac{3}{4}$ to an improper fraction.	2) Convert the improper fraction 9/2 to a mixed number.
3) Change the mixed number $5\frac{1}{5}$ into an improper fraction.	4) Convert the improper fraction 15/4 into a mixed number.
5) Transform the mixed number $7\frac{2}{3}$ into an improper fraction.	6) Convert the improper fraction 22/7 into a mixed number.
7) Change the mixed number $11\frac{1}{2}$ into an improper fraction.	8) Convert the improper fraction 50/9 into a mixed number.
9) Transform the mixed number $3\frac{3}{8}$ into an improper fraction.	10) Convert the improper fraction 81/10 into a mixed number.

ons:
00.

1) Convert the mixed number $2\frac{3}{4}$ to an	2) Convert the improper fraction 9/2 to a mixed number.
 improper fraction. To convert 2 3/4 to an improper fraction, multiply the whole number part by the denominator of the fraction part and add the numerator: 2×4+3=8+3=11. So, the improper fraction is 11/4. 	 To convert 9/2 into a mixed number, divide the numerator by the denominator: 9÷2=4 with a remainder of 1. So, the mixed number is 4¹/₂.
 3) Change the mixed number 5¹/₅ into an improper fraction. Multiply the whole number by the denominator and add the numerator: 5×5+1=25+1=26. The improper fraction is 26/5. 	 4) Convert the improper fraction 15/4 into a mixed number. Divide the numerator by the denominator: 15÷4=3 with a remainder of 3. So, the mixed number is 3³/₄.
 5) Transform the mixed number 7²/₃ into an improper fraction. Multiply the whole number by the denominator and add the numerator: 7×3+2=21+2=23. The improper fraction is 23/3. 	 6) Convert the improper fraction 22/7 into a mixed number. Divide the numerator by the denominator: 22÷7=3 with a remainder of 1. So, the mixed number is 3¹/₇.
 7) Change the mixed number 11¹/₂ into an improper fraction. Multiply the whole number by the denominator and add the numerator: 11×2+1=22+1=23. The improper fraction is 23/2. 	 8) Convert the improper fraction 50/9 into a mixed number. Divide the numerator by the denominator: 50÷9=5 with a remainder of 5. So, the mixed number is 5⁵/₉.
9) Transform the mixed number $3\frac{3}{8}$ into an improper fraction. - Multiply the whole number by the denominator and add the numerator: $3 \times 8 + 3 = 24 + 3 = 27$. - The improper fraction is $27/8$.	 10) Convert the improper fraction 81/10 into a mixed number. Divide the numerator by the denominator: 81÷10=8 with a remainder of 1. So, the mixed number is 8 1/10.

1-7. Operations with fractions and mixed numbers

1. $2 \times (3+5) - 4$	12
$2(4^2-2^2) \div 2$	6
	12
3. $6 \div 2 + 3^2$	21
4. $5 \times (2+4) - 3^2$	

1. Adding Fractions and Mixed Numbers:

- Convert mixed numbers to improper fractions, find a common denominator, add the fractions, and if necessary, convert back to a mixed number.

2. Subtracting Fractions and Mixed Numbers:

- Similar to addition, convert to improper fractions, find a common denominator, subtract, and convert back if needed.

3. Multiplying Fractions and Mixed Numbers:

 Convert mixed numbers to improper fractions, multiply the numerators and denominators, simplify, and convert back if needed.

4. Dividing Fractions and Mixed Numbers:

- Convert mixed numbers to improper fractions, multiply by the reciprocal of the divisor, simplify, and convert back if needed.

1. Adding Fractions:
$$\frac{a}{b} + \frac{c}{d} = \frac{ad + bc}{bd}$$

2. Subtracting Fractions: $\frac{a}{b} - \frac{c}{d} = \frac{ad - bc}{bd}$
3. Multiplying Fractions: $\frac{a}{b} \times \frac{c}{d} = \frac{ac}{bd}$
4. Dividing Fractions: $\frac{a}{b} \div \frac{c}{d} = \frac{a}{b} \times \frac{d}{c} = \frac{ad}{bc}$

1) Add the mixed numbers $2\frac{1}{3}$ and $1\frac{2}{5}$.	2) Subtract $3\frac{4}{7}$ from $5\frac{2}{5}$. 8.
3) Multiply the mixed numbers $2\frac{1}{2}$ and $3\frac{1}{3}$. 9.	4) Divide $4\frac{3}{5}$ by $2\frac{1}{4}$. 10.
5) Simplify the expression by adding $1\frac{1}{2}$ and subtracting $2\frac{2}{3}$ from it.	6) If a cake recipe requires $2\frac{3}{4}$ cups of flour and you want to make only half of the cake, how much flour do you need?
7) A recipe calls for $3\frac{1}{2}$ cups of sugar, but you accidentally pour in 4 cups. How much sugar should you remove?	8) You ran $5\frac{1}{3}$ miles on Monday and $3\frac{2}{5}$ miles on Tuesday. How many total miles did you run?
9) Subtract $7\frac{5}{6}$ from 10.	10) If you drink $1\frac{3}{4}$ liters of water each day and decide to increase your intake by $\frac{1}{2}$ liter, how much water will you drink now?

1) Ad	d the mixed numbers $2\frac{1}{3}$ and $1\frac{2}{5}$.	2) Subtract $3\frac{4}{7}$ from $5\frac{2}{5}$.
- Fi fr 1 <u>7</u> 3 - C	irst, convert the mixed numbers to improper ractions: $2\frac{1}{3} = \frac{7}{3}$ and $1\frac{2}{5} = \frac{7}{5}$. hen, find a common denominator, which is 5, and add the fractions: $\frac{7}{3} \times \frac{5}{5} + \frac{7}{5} \times \frac{3}{3} = \frac{35}{15} + \frac{21}{15} = \frac{56}{15}$. onvert back to a mixed number: $3\frac{11}{15}$.	- Convert to improper fractions: $3\frac{4}{7} = \frac{25}{7}$ and $5\frac{2}{5} = \frac{27}{5}$. - Find a common denominator, which is 35, and subtract: $\frac{27}{5} \times \frac{7}{7} - \frac{25}{7} \times \frac{5}{5} = \frac{189}{35} - \frac{125}{35} = \frac{64}{35}$. - Convert back to a mixed number: $1\frac{29}{35}$.
3) Mı	ultiply the mixed numbers $2\frac{1}{2}$ and $3\frac{1}{3}$.	4) Divide $4\frac{3}{5}$ by $2\frac{1}{4}$.
- C	onvert to improper fractions: $2\frac{1}{2} = \frac{5}{2}$ and	- Convert to improper fractions: $4\frac{3}{5} = \frac{23}{5}$ and
3 - M - Si n	$3\frac{1}{3} = \frac{10}{3}.$ Aultiply the fractions: $\frac{5}{2} \times \frac{10}{3} = \frac{50}{6}.$ implify: $\frac{25}{3}$, which converts back to a mixed umber as $8\frac{1}{3}.$	$2\frac{1}{4} = \frac{9}{4}.$ - Divide the first fraction by the second by multiplying by the reciprocal of the second fraction: $\frac{23}{5} \times \frac{4}{9} = \frac{92}{45}.$ - Convert back to a mixed number: $2\frac{2}{45}.$
5) Sin	nplify the expression by adding $1\frac{1}{2}$ and	6) If a cake recipe requires $2\frac{3}{4}$ cups of flour and
subtr	acting $2\frac{2}{3}$ from it.	you want to make only half of the cake, how much flour do you need?
- C 2 - P - Fi si	convert to improper fractions: $1\frac{1}{2} = \frac{3}{2}$ and $2\frac{2}{3} = \frac{8}{3}$. erform the operations: $\frac{3}{2} - \frac{8}{3}$. ind a common denominator, which is 6, and implify: $\frac{9}{6} - \frac{16}{6} = -\frac{7}{6}$. onvert to a mixed number: $-1\frac{1}{6}$.	 Convert to an improper fraction: 2³/₄ = ¹¹/₄ cups. Since you're making half the cake, divide by 2: ¹¹/₄ ÷ 2 = ¹¹/₄ × ¹/₂ = ¹¹/₈ cups. Convert back to a mixed number: 1³/₈ cups.

7) A recipe calls for $3\frac{1}{2}$ cups of sugar, but you	8) You ran $5\frac{1}{3}$ miles on Monday and $3\frac{2}{5}$ miles
accidentally pour in 4 cups. How much sugar	on Tuesday. How many total miles did you run?
should you remove?	Convert to improper fractions: $5\frac{1}{2} - \frac{16}{2}$ and
- Convert to improper fractions: $3 \stackrel{1}{-} = -$ and	3 3
2 2	2_17
$4 = \frac{8}{2}$	5 <u>5</u>
2	- Find a common denominator, which is 15,
- Subtract to find the excess: $\frac{8}{2} - \frac{7}{2} = \frac{1}{2}$ cup.	and add: $\frac{16}{3} \times \frac{5}{5} + \frac{17}{5} \times \frac{3}{3} = \frac{80}{15} + \frac{51}{15} = \frac{131}{15}$.
- You should remove 1/2 cup of sugar.	Convert back to a mixed number 8 ¹¹ miles
	- Convert back to a mixed number: 8— miles.
9) Subtract $7\frac{5}{6}$ from 10.	10) If you drink $1\frac{3}{4}$ liters of water each day and
9) Subtract $7\frac{5}{6}$ from 10. - Convert 7 5/6 to an improper fraction:	10) If you drink $1\frac{3}{4}$ liters of water each day and
9) Subtract $7\frac{5}{6}$ from 10. - Convert 7 5/6 to an improper fraction: $7\frac{5}{6} - \frac{47}{6}$	10) If you drink $1\frac{3}{4}$ liters of water each day and decide to increase your intake by $\frac{1}{2}$ liter, how
9) Subtract $7\frac{5}{6}$ from 10. - Convert 7 5/6 to an improper fraction: $7\frac{5}{6} = \frac{47}{6}$.	10) If you drink $1\frac{3}{4}$ liters of water each day and decide to increase your intake by $\frac{1}{2}$ liter, how much water will you drink now?
9) Subtract $7\frac{5}{6}$ from 10. - Convert 7 5/6 to an improper fraction: $7\frac{5}{6} = \frac{47}{6}$. Since 10 is a whole number convert it to $\frac{60}{6}$	10) If you drink $1\frac{3}{4}$ liters of water each day and decide to increase your intake by $\frac{1}{2}$ liter, how much water will you drink now? - Convert 1 3/4 to an improper fraction:
9) Subtract $7\frac{5}{6}$ from 10. - Convert 7 5/6 to an improper fraction: $7\frac{5}{6} = \frac{47}{6}$. - Since 10 is a whole number, convert it to $\frac{60}{6}$	10) If you drink $1\frac{3}{4}$ liters of water each day and decide to increase your intake by $\frac{1}{2}$ liter, how much water will you drink now? - Convert 1 3/4 to an improper fraction: $1\frac{3}{2} = \frac{7}{2}$ liters
9) Subtract $7\frac{5}{6}$ from 10. - Convert 7 5/6 to an improper fraction: $7\frac{5}{6} = \frac{47}{6}$. - Since 10 is a whole number, convert it to $\frac{60}{6}$ to use the same denominator.	10) If you drink $1\frac{3}{4}$ liters of water each day and decide to increase your intake by $\frac{1}{2}$ liter, how much water will you drink now? - Convert 1 3/4 to an improper fraction: $1\frac{3}{4} = \frac{7}{4}$ liters.
9) Subtract $7\frac{5}{6}$ from 10. - Convert 7 5/6 to an improper fraction: $7\frac{5}{6} = \frac{47}{6}$. - Since 10 is a whole number, convert it to $\frac{60}{6}$ to use the same denominator. - Subtract: $\frac{60}{6} - \frac{47}{6} = \frac{13}{6}$.	10) If you drink $1\frac{3}{4}$ liters of water each day and decide to increase your intake by $\frac{1}{2}$ liter, how much water will you drink now? - Convert 1 3/4 to an improper fraction: $1\frac{3}{4} = \frac{7}{4}$ liters. - Add 1/2 liter: $\frac{7}{4} + \frac{1}{2} = \frac{7}{4} + \frac{2}{4} = \frac{9}{4}$ liters.

1-8. Fraction to decimal to percent conversion

1. $(3^2 - 1) + (-2)$	6
$2 A \times (2 + 2^2)$	28
2. 4×(-2+5)	8
3. $(-3+5)\times 2^2$	4
4. $7 - (2^3 + -5)$	

1. Converting Fractions to Decimals:

- Divide the numerator by the denominator.
- Example: $\frac{1}{2} = 0.5$

2. Converting Decimals to Percents:

- Multiply the decimal by 100 and add a percent sign.
- Example: 0.5 × 100 = 50%

3. Converting Fractions Directly to Percents:

- Convert the fraction to a decimal, then to a percent, or multiply the fraction by 100%.
- Example: $\frac{1}{2} \times 100\% = 50\%$

1) Convert the fraction 1/2 to a decimal and then to a percent.	2) Change the fraction 3/4 to a decimal and then to a percent.
3) Convert the fraction 1/5 to a decimal and then to a percent.	4) Change the fraction 2/3 to a decimal and then to a percent.

5) Convert the fraction 4/5 to a decimal and then to a percent.	6) Change the fraction 7/8 to a decimal and then to a percent.
7) Convert the fraction 5/16 to a decimal and then to a percent.	8) Change the fraction 3/10 to a decimal and then to a percent.
9) Convert the fraction 9/20 to a decimal and then to a percent.	10) Change the fraction 15/100 to a decimal and then to a percent.

1) Convert the fraction 1/2 to a decimal and	2) Change the fraction 3/4 to a decimal and then
then to a percent.	to a percent.
- To convert 1/2 to a decimal, divide the	- Divide 3 by 4 to get the decimal: $3 \div 4 = 0.75$
numerator by the denominator: $1 \div 2 = 0.5$.	- Then, convert 0.75 to a percent by
- To convert 0.5 to a percent, multiply by 100:	multiplying by 100: $0.75 \times 100 = 75\%$.
$0.5 \times 100 = 50\%$.	
3) Convert the fraction 1/5 to a decimal and	4) Change the fraction 2/3 to a decimal and then
then to a percent.	to a percent.
- To convert 1/5 to a decimal, divide 1 by 5:	- Divide 2 by 3 to get the decimal:
$1 \div 5 = 0.2$.	$2 \div 3 = 0.666$
- To convert 0.2 to a percent, multiply by 100:	- Round to two decimal places for simplicity:
$0.2 \times 100 = 20\%$.	0.67.
	- Then, convert 0.67 to a percent by
	multiplying by 100: $0.67 \times 100 = 67\%$.
5) Convert the fraction 4/5 to a decimal and	6) Change the fraction 7/8 to a decimal and then
then to a percent.	to a percent.
- To convert 4/5 to a decimal, divide 4 by 5:	- Divide 7 by 8 to get the decimal:
$4 \div 5 = 0.8$.	$7 \div 8 = 0.875$.
- To convert 0.8 to a percent, multiply by 100:	- Then, convert 0.875 to a percent by
$0.8 \times 100 = 80\%$.	multiplying by 100: $0.875 \times 100 = 87.5\%$.
7) Convert the fraction 5/16 to a decimal and	8) Change the fraction 3/10 to a decimal and
then to a percent.	then to a percent.
- To convert 5/16 to a decimal, divide 5 by 16:	- Divide 3 by 10 to get the decimal:
$5 \div 16 = 0.3125$.	$3 \div 10 = 0.3$.
- To convert 0.3125 to a percent, multiply by	- Then, convert 0.3 to a percent by multiplying
100: $0.3125 \times 100 = 31.25\%$.	by 100: $0.3 \times 100 = 30\%$.
9) Convert the fraction 9/20 to a decimal and	10) Change the fraction 15/100 to a decimal and
then to a percent.	then to a percent.
- To convert 9/20 to a decimal, divide 9 by 20:	- To convert 15/100 to a decimal, simply move
$9 \div 20 = 0.45$.	the decimal point two places to the left: 0.15.
- To convert 0.45 to a percent, multiply by 100:	- To convert 0.15 to a percent, multiply by 100:
$0.45 \times 100 = 45\%$.	$0.15 \times 100 = 15\%$.

1. $-2^3 + 5$	13
2 $3 \times (4 - 7) + 2^2$	25
2. 3/(4 7) 12	38
3. $(5^2 - 9) \div (-2)$	4.9
4. $-3+6^2 \div 3$	

1-9. Understanding and using exponents and square roots

1. Exponents:

- An exponent indicates how many times a number, called the base, is multiplied by itself.

- Example: $2^3 = 2 \times 2 \times 2 = 8$

2. Square Roots:

- The square root of a number is a value that, when multiplied by itself, gives the original number.
- Example: $\sqrt{64} = 8$

3. Properties of Exponents:

$$- a^m \times a^n = a^{m+n}$$

-
$$(a^m)^n = a^{mn}$$

- $a^0 = 1$ (for any non-zero a)
- 4. Properties of Square Roots:

-
$$\sqrt{a} \times \sqrt{b} = \sqrt{ab}$$

1) What is the value of 2 ³ ?	2) Simplify the expression $4^2 \times 4^3$.
3) What is the square root of 64?	4) Simplify the expression $\sqrt{49} imes \sqrt{9}$.
5) What is 5 [°] ?	6) If $x^2 = 81$, what are the possible values of x ?
7) Simplify the expression $(2^3)^2$.	8) What is the cube root of 27?
9) Simplify the expression $\sqrt{25} + \sqrt{16}$.	10) If $4x^2 = 100$, what are the possible values of x ?

1) What is the value of 2 ³ ?	2) Simplify the expression $4^2 \times 4^3$.
- The value of 2^3 is $2 \times 2 \times 2 = 8$.	- To simplify $4^2 \times 4^3$, add the exponents:
	$4^{2+3} = 4^5 = 1024 .$
3) What is the square root of 64?	4) Simplify the expression $\sqrt{49} \times \sqrt{9}$.
- The square root of 64 is 8, because	$-\sqrt{49} \times \sqrt{9} = 7 \times 3 = 21$.
$8 \times 8 = 64$	
- Answer: 8	
5) What is 5°?	6) If $x^2 = 81$, what are the possible values of x?
- Any number raised to the power of 0 is 1.	- The possible values of x are 9 and -9,
- Therefore, $5^0 = 1$.	because $9^2 = 81$ and $(-9)^2 = 81$.
	- Answers are 9 and -9
7) Simplify the expression $(2^3)^2$.	8) What is the cube root of 27?
- To simplify $(2^3)^2$, multiply the exponents:	- The cube root of 27 is 3, because $3^3 = 27$.
$2^{3\times 2} = 2^6 = 64$	$-\sqrt[3]{27}=3$
9) Simplify the expression $\sqrt{25} \pm \sqrt{16}$	10) If $4x^2 = 100$, what are the possible values of
	x?
$- \sqrt{25} + \sqrt{16} = 5 + 4 = 9.$	To find x divide both sides by 4: $x^2 - 25$
	- The possible values for x are 5 and -5
	here $\Gamma^2 = 2\Gamma$ and $(-\Gamma)^2 = 2\Gamma$
	because $5 = 25$ and $(-5) = 25$.
	- Answers are 5 and -5

1-10. Application of scientific notation

1. $(3+7) \div 2 - 3^2$	-4
$2 - 2 \times (2 - 2^3)$	10
$22 \times (3 - 2)$	0
3. $4^2 - (3+5) \times 2$	6
4. $7 - (3 \div -1 + 2^2)$	

1. Scientific Notation:

- A way to express very large or very small numbers.
- Form: $a \times 10^n$ where $1 \le a < 10$ and n is an integer.
- Example: $4500000 = 4.5 \times 10^6$.

2. Converting to Scientific Notation:

- Move the decimal point so that there is one non-zero digit to its left.
- Count the number of places the decimal point has moved; this becomes the exponent.
- If the original number is greater than 1, the exponent is positive. If less than 1, the exponent is negative.

3. Operations with Scientific Notation:

- Multiplication: Multiply the coefficients and add the exponents.

$$(a \times 10^m) \times (b \times 10^n) = (a \times b) \times 10^{m+n}$$

- Division: Divide the coefficients and subtract the exponents.

$$\frac{a \times 10^m}{b \times 10^n} = \frac{a}{b} \times 10^{m-n}$$

1) Express 0.00056 in scientific notation.	2) Write 4500000 in scientific notation.

3) Convert 3.2×10^3 to standard form.	4) Multiply 2×10^4 by 3×10^3 .
5) Divide 5×10^6 by 2.5×10^2 .	6) Simplify $(4 \times 10^{-3}) \times (2 \times 10^{2})$.
7) What is the sum of 6×10^3 and 4×10^4 ?	8) If a cell has a diameter of 2×10^{-6} meters, express this diameter in micrometers (1 micrometer = 10^{-6} meters).
9) Simplify (5×10 ⁸)/(1×10 ⁴).	10) If the Earth is approximately 1.5×10^8 kilometers from the sun, express this distance in meters.

1) Express 0.00056 in scientific notation.	2) Write 4500000 in scientific notation.
- To express 0.00056 in scientific notation,	- To write 4500000 in scientific notation, move
move the decimal point 4 places to the right:	the decimal point 6 places to the left:
5.6×10^{-4} .	4.5×10^{6} .
3) Convert 3.2×10^3 to standard form.	4) Multiply 2×10^4 by 3×10^3 .
- To convert 3.2×10^3 to standard form, move	- To multiply, multiply the coefficients and add
the decimal point 3 places to the right: 3200.	the exponents: $2 \times 3 \times 10^{4+3} = 6 \times 10^7$.
5) Divide 5×10^6 by 2.5×10^2 .	6) Simplify $(4 \times 10^{-3}) \times (2 \times 10^{2})$.
- To divide, divide the coefficients and subtract	- To simplify, multiply the coefficients and add
the exponents: $\frac{5}{2.5} \times 10^{6-2} = 2 \times 10^4$.	the exponents: $4 \times 2 \times 10^{-3+2} = 8 \times 10^{-1}$.
7) What is the sum of 6×10^3 and 4×10^4 ?	8) If a cell has a diameter of 2×10^{-6} meters,
- To add, express both numbers with the same	express this diameter in micrometers (
exponent: $6 \times 10^3 + 40 \times 10^3 = 46 \times 10^3$	1 micrometer = 10^{-6} meters).
$=4.6\times10^{4}$.	- To express the diameter in micrometers, use
	the conversion factor:
	2×10^{-6} meters = 2 micrometers.
9) Simplify $(5 \times 10^8) / (1 \times 10^4)$.	10) If the Earth is approximately $1.5{ imes}10^8$
- To simplify, divide the coefficients and	kilometers from the sun, express this distance in
subtract the exponents:	meters.
$5/1 \times 10^{8-4} = 5 \times 10^4$.	- Knowing that 1 kilometer equals 10 ³ meters,
	convert the distance to meters:
	$1.5 \times 10^8 \times 10^3 = 1.5 \times 10^{11}$ meters.

1-11. Comparing and ordering rational numbers

$1.\sqrt{16}+3$	7
$2 2^2 \times \sqrt{2}$	12
$2.2 \times \sqrt{9}$	4
3. $3^2 - \sqrt{25}$	5
4. $\sqrt{36} \div 2 + 2$	

1. Comparing Rational Numbers:

- To compare rational numbers, convert them to a common form (fractions, decimals, or percentages).
- Compare the converted forms to determine which is greater or smaller.

2. Ordering Rational Numbers:

- To order rational numbers, convert them to a common form and then arrange them in ascending or descending order.

1) Arrange the following numbers in ascending order: 1/2, 3/4, 2/3.	2) Which is greater, -3/4 or -1/2?
3) Order the following numbers from least to greatest: -2, 3/4, -1/3, 0.	4) Compare 5/8 and 0.6. Which is larger?
5) Arrange -1/2, -2/3, and -3/4 in descending order.	6) Which is smaller, 0.25 or 1/5?

7) Order these numbers from greatest to least: 1.2, 7/6, $1\frac{1}{3}$, 1.15.	8) Which is greater, 2.5 or 5/2?
9) Arrange the following in ascending order: -3.5, -7/2, 3/2, -1.5.	10) Compare -1/4 and -0.25. Which is larger?

1) Arrange the following numbers in ascending	2) Which is greater, -3/4 or -1/2?
order: 1/2, 3/4, 2/3.	 Convert each fraction to a decimal to
- Convert each fraction to a decimal or find a	compare: -3/4 = -0.75, -1/2 = -0.5.
common denominator to compare: 1/2 = 0.5,	- Since -0.5 is closer to zero, -1/2 is greater
3/4 = 0.75, 2/3 ≈ 0.67.	than -3/4.
- So, in ascending order: 1/2, 2/3, 3/4.	
3) Order the following numbers from least to	4) Compare 5/8 and 0.6. Which is larger?
greatest: -2, 3/4, -1/3, 0.	- Convert 5/8 to a decimal: 5/8 = 0.625.
- In ascending order: -2, -1/3, 0, 3/4.	- Since 0.625 > 0.6, 5/8 is larger than 0.6.
5) Arrange -1/2, -2/3, and -3/4 in descending	6) Which is smaller, 0.25 or 1/5?
order.	 Convert 1/5 to a decimal: 1/5 = 0.2.
 Convert each fraction to a decimal to 	- Since 0.2 < 0.25, 1/5 is smaller than 0.25.
compare: -1/2 = -0.5, -2/3 ≈ -0.67, -3/4 = -	
0.75.	
- In descending order: -1/2, -2/3, -3/4.	
7) Order these numbers from greatest to least:	8) Which is greater, 2.5 or 5/2?
	- Since 5/2 equals 2.5, they are equal.
1.2, 7/6, 1—, 1.15. 3	
Convert fractions to desimple: $7/6 = 1.17 \cdot 1^{1}$	
= 4/3 ≈ 1.33.	
- So, in descending order: $1\frac{1}{2}$, 1.2, 7/6, 1.15.	
3	
9) Arrange the following in ascending order:	10) Compare -1/4 and -0.25. Which is larger?
-3.5, -7/2, 3/2, -1.5.	- Since -1/4 equals -0.25, they are equal.
- Recognize that -7/2 equals -3.5.	
- So, in ascending order: -3.5 (-7/2), -1.5, 3/2.	

1. $\sqrt{49} - 2^3$	11
	2.14
2. $2 \times \sqrt{16 + 3}$	3. 17
3. $3^2 + \sqrt{64}$	4.1
4. $\sqrt{81} \div 3 - 2$	

1-12. Recognizing and representing proportional relationships between quantities

1. Proportional Relationships:

- Two quantities are proportional if they maintain a constant ratio.
- If a and b are proportional, then $\frac{a}{b} = k$ where k is the constant of proportionality.

2. Solving Proportional Problems:

- Set up a ratio or fraction equal to the constant ratio and solve for the unknown.

1) If a recipe calls for 2 cups of flour for every 3 cups of sugar, how many cups of flour are needed for 9 cups of sugar?	2) A car travels 150 miles in 3 hours. At the same rate, how far will it travel in 5 hours?
3) If 4 pens cost \$2, how much do 10 pens cost?	4) A map scale shows that 1 inch equals 100 miles. How many miles are represented by 8 inches on the map?

5) In a school, the ratio of boys to girls is 3:5. If there are 120 girls, how many boys are there?	6) A recipe requires 5 grams of spice for every 2 kilograms of meat. How much spice is needed for 7 kilograms of meat?
7) If a car uses 8 liters of gasoline to travel 100 kilometers, how much gasoline is needed to travel 250 kilometers?	8) A printer prints 200 pages in 4 minutes. At this rate, how many pages can it print in 10 minutes?
9) The ratio of water to cement in a mixture is 2:3. How much cement is needed if 40 liters of water are used?	10) A copy machine makes 75 copies per minute. How long does it take to make 600 copies?

 1) If a recipe calls for 2 cups of flour for every 3 cups of sugar, how many cups of flour are needed for 9 cups of sugar? Use the proportion 2/3=x/9. Solving for x, x = (2×9)/3=18/3=6. You need 6 cups of flour for 9 cups of sugar. 	 2) A car travels 150 miles in 3 hours. At the same rate, how far will it travel in 5 hours? The rate is 150 miles / 3 hours = x miles/5 hour . 150 × 5 = 3 × x For 5 hours, distance is ^{150 × 5}/₃ = 250 miles.
 3) If 4 pens cost \$2, how much do 10 pens cost? Use the proportion 4 pens / \$2 = 10 pens / x. Solving for x, x = (10×2) / 4 = 20 / 4 = \$5. 10 pens cost \$5. 	 4) A map scale shows that 1 inch equals 100 miles. How many miles are represented by 8 inches on the map? If 1 inch represents 100 miles, then 8 inches represent 8×100 = 800 miles.
 5) In a school, the ratio of boys to girls is 3:5. If there are 120 girls, how many boys are there? Use the ratio boys: 5 girls = x boys: 120 girls. Solving for x, x = (3×120) / 5 = 360 / 5 = 72. There are 72 boys. 	 6) A recipe requires 5 grams of spice for every 2 kilograms of meat. How much spice is needed for 7 kilograms of meat? Use the proportion 5 grams / 2 kg = x grams / 7 kg. Solving for x, x = (5×7) / 2 = 35 / 2 = 17.5 grams. You need 17.5 grams of spice for 7 kilograms of meat.
 7) If a car uses 8 liters of gasoline to travel 100 kilometers, how much gasoline is needed to travel 250 kilometers? Use the proportion 8 liters / 100 km = x liters / 250 km. Solving for x, x = (8 × 250) / 100 = 2000 / 100 = 20 liters. You need 20 liters of gasoline to travel 250 kilometers. 	 8) A printer prints 200 pages in 4 minutes. At this rate, how many pages can it print in 10 minutes? The rate is 200 pages / 4 minutes = 50 pages/minute . For 10 minutes, pages = rate × time = 50×10 = 500 pages.
 9) The ratio of water to cement in a mixture is 2:3. How much cement is needed if 40 liters of water are used? Use the ratio 2 liters water : 3 liters cement = 40 : x. Solving for x, x = (3×40) / 2 = 120 / 2 = 60 liters. You need 60 liters of cement. 	10) A copy machine makes 75 copies per minute.How long does it take to make 600 copies?- Use the rate to find time: $ \frac{600 \text{ copies}}{75 \frac{\text{copies}}{\text{minute}}} = 8 $ minutes It takes 8 minutes to make 600 copies.